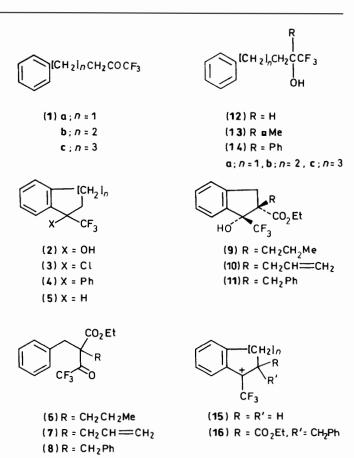
# Access to Trifluoromethylindanes; Cycloalkylation of β-Phenyl Trifluoromethyl Ketones, β-Keto Esters, and Alcohols

Corinne Aubert, Jean-Pierre Bégué,\* Danièle Bonnet-Delpon, and Dany Mesureur CNRS-CERCOA, 2 rue Henri Dunant, 94320 Thiais, France

Cycloalkylation of  $\beta$ -phenyl trifluoromethyl ketones,  $\beta$ -keto esters, and alcohols provides indanic compounds bearing a CF<sub>3</sub> group.


New methods are needed for the synthesis of alicyclic compounds containing the trifluoromethyl group, in view of the increased interest in this unit which affords special electronic effects and enhanced lipophilicity. We have recently reported a route to 1-trifluoromethyl tetralins by Friedel–Crafts cyclization of  $\omega$ -aryl trifluoromethyl alcohols <sup>1</sup> and ketones.<sup>2</sup> In spite of the well known difficulty of five-membered-ring formation,<sup>3,4</sup> we have attempted to prepare 1-trifluoromethylindane derivatives by intramolecular Friedel–Crafts alkylation of  $\beta$ -aryl trifluoromethyl ketones, alcohols, and non-enolizable  $\beta$ -keto esters. Some attempts at cyclization of  $\delta$ -aryl trifluoromethyl ketones and alcohols to seven-membered rings have been performed.

## Results

Ketone (1b) reacts with AlCl<sub>3</sub> or TiCl<sub>4</sub> (1 mol equiv.) to give, at low temperature, the tetralol (2b); at 0 °C this leads to the chloride (3b) or the tetralin (4b) when the reaction is performed in benzene.<sup>2</sup> On the other hand, ketone (1a) did not react with TiCl<sub>4</sub> (run 1), and reacted very slowly with AlCl<sub>3</sub> to afford polymeric materials (run 2) (Table 1). So, we have attempted cyclization of ketones (1a) and (1b) in the presence of ethyl- or methylaluminium dichloride. At -78 °C, ketone (1a) could not cyclize with EtAlCl<sub>2</sub>, but led to the reduced product (12a) (run 3); on the other hand, ketone (1b) afforded mainly the cyclized alcohol (2b) (60%) (run 6). Ketone (1a) did not react, at -78 °C, with 1 equiv. of MeAlCl<sub>2</sub>; with 2 equiv. of MeAlCl<sub>2</sub>, the reaction was complete when the temperature was allowed to rise to 0 °C, and led to a mixture of the indanol (2a) (30%) and the indane (5a) (20%) (run 5). In the same conditions, ketone (1b) afforded the tetralol (2b) in high yield (78%) (run 8). When reactions were performed with AlCl<sub>3</sub> in the presence of benzene (Table 2), the 1phenylindane (4a) was obtained from ketone (1a) in excellent yield (77%), whereas ketone (1b) led, in the same conditions, to chloride (3b), a longer time of reaction being necessary for the introduction of benzene (runs 11 and 12). In solvolytic conditions (CF<sub>3</sub>CO<sub>2</sub>H, H<sub>2</sub>SO<sub>4</sub>), the 1-phenylindane (4a) was obtained from tertiary alcohol (14a), as well as in the tetralin series,<sup>1</sup> but with a lower yield (Table 3, run 14).

The attempted cyclizations of  $\delta$ -phenyl ketone (1c) and alcohol (14c) to seven-membered-ring compounds failed; only polymeric and nucleophilic addition products or starting materials were recovered (runs 9 and 13).

The reactions of  $\beta$ -keto esters (6), (7), and (8), with EtAlCl<sub>2</sub> (3 mol equiv.) led respectively to the 1-trifluoromethyl indan-1-ols (9), (10), and (11) in 90% yield,<sup>†</sup> without any formation of reduced products (Table 4). Reactions with TiCl<sub>4</sub> were faster, and needed only 1 mol equiv. of Lewis acid. The reactions are stereoselective: only one diastereoisomer was obtained. The *cis* 



relationship between hydroxy and carboxylate stereocentres was established on the basis of i.r. absorption frequencies of the O–H and C=O stretches which indicate strong intramolecular H-bonding.<sup>6,7</sup>, $\ddagger$  In the same solvolytic conditions as for compounds (14), the indanol (11) was partly cyclized into tetracyclic compound (17), bearing an angular trifluoromethyl group, and also gave the fragmented ester (18).

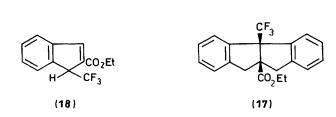
## Discussion

These results show clearly the great difference of reactivity between  $\beta$ -,  $\gamma$ -, and  $\delta$ -aryl trifluoromethyl ketones. As expected,

<sup>†</sup> The enolizable ethyl α-benzyltrifluoroacetoacetate did not cyclize with Lewis acid, but gave a metallic chelate.

<sup>&</sup>lt;sup>‡</sup> The procedure of conversion of β-hydroxy ester (11) into β-lactone as evidence of this *cis* relationship as in ref. 6 led to 2-benzyl-1-trifluoromethylindane. Nevertheless, the formation of this olefin confirms indirectly the *cis* relationship between the hydroxy and ethoxycarbonyl groups, since it is very probable that this olefin would be formed from the benzylic and very strained β-lactone.<sup>7</sup>

Table 1. Cycloalkylation of ketones (1) by Lewis acid


|     |                     |                         |                |                                 | Yield <sup>b</sup> |     |                |                  |        |       |
|-----|---------------------|-------------------------|----------------|---------------------------------|--------------------|-----|----------------|------------------|--------|-------|
|     | Ketone <sup>a</sup> | Lewis acid              | Conditions     |                                 | Cyclized products  |     | Other products |                  |        |       |
| Run | 10 <sup>-4</sup> м  | (mol equiv.)            | Temp./°C (t/h) | Solvent                         | ໌ ( <b>2</b> )     | (3) | (5)            | (1) <sup>f</sup> | (12)   | (13)  |
| 1   | ( <b>1a</b> )       | $TiCl_4$ (2)            | 0(2.5)         | CH <sub>2</sub> Cl <sub>2</sub> |                    |     |                | 98               |        |       |
| 2   | ( <b>1a</b> )       | $AlCl_3(1)^c$           | 0(0.5)         | CH <sub>2</sub> Cl <sub>2</sub> |                    | 9   |                | 65               |        |       |
| 3   | ( <b>1a</b> )       | $EtAlCl_{2}(2)$         | -78(0.5)       | Hexane                          |                    |     |                | 18(15)           | 80(75) |       |
| 4   | ( <b>1a</b> )       | $MeAlCl_{2}(1)$         | -78(0.5)       | Hexane                          |                    |     |                | 96               |        |       |
| 5   | $(1a)^{d}$          | MeAlCl <sub>2</sub> (2) | -78 to 0(1.5)  | Hexane                          | 30(25)             | 2   | 20(17)         | 7(5)             |        | 10(7) |
| 6   | (1b)                | $EtAlCl_{2}(1)$         | -78(0.5)       | Hexane                          | 60                 |     |                | 3                | 30     |       |
| 7   | (1b)                | $MeAlCl_{2}(1)$         | -78(0.5)       | Hexane                          | 19                 |     |                | 64               |        |       |
| 8   | (1b) <sup>e</sup>   | MeAlCl <sub>2</sub> (2) | -78 to 0(1.5)  | Hexane                          | 78(75)             | 2   | 6              |                  |        |       |
| 9   | (1c)                | MeAlCl <sub>2</sub> (2) | -78 to 0(1.5)  | Hexane                          |                    |     |                |                  |        | 18    |

<sup>a</sup> Ketones (1a) and (1c) were prepared by alkylation of ethyl 4,4,4-trifluoroacetoacetate;<sup>5a</sup> for ketone (1b), see ref. 13. <sup>b</sup> Yields estimated by g.l.c. with an internal standard. The parenthetic values are yields of isolated pure products. <sup>c</sup> Remaining products were polymeric materials. Using AlCl<sub>3</sub> (2 mol equiv.) or with a longer reaction time, no starting material was recovered, but only polymeric materials. <sup>d</sup> With a longer reaction time, the chloride (3a) was formed from the indanol (2a), and was then converted into polymeric materials. <sup>e</sup> On using AlCl<sub>3</sub> or TiCl<sub>4</sub> at 0 °C for 3 h, ketone (1b) gave the chloride (3b) in high yield.<sup>2 f</sup> Recovered starting material.

**Table 2.** Cycloalkylation of ketones (1) by  $AlCl_3$  in the presence of benzene<sup>*a*</sup>

|     |               | Cycliz       | ed produc | Starting material recovery |     |
|-----|---------------|--------------|-----------|----------------------------|-----|
| Run | Ketone        | ( <b>2</b> ) | (3)       | (4)                        | (1) |
| 10  | ( <b>1</b> a) |              |           | 77(72)                     |     |
| 11  | (1b)          |              | 90(82)    | 4                          |     |
| 12° | (1b)          |              | 7         | 55(52)                     |     |
| 13  | ( <b>lc</b> ) |              |           |                            | 95  |

<sup>*a*</sup> Reactions were conducted at -78 °C by adding AlCl<sub>3</sub> (2 mol equiv.) to a 1 × 10<sup>-4</sup>M solution of a ketone (1) in a mixture CH<sub>2</sub>Cl<sub>2</sub>-C<sub>6</sub>H<sub>6</sub> (1:1), then warming to 0 °C for 1 h. <sup>*b*</sup>Yields estimated by g.l.c. with an internal standard. The parenthetic values are yields of isolated pure products. <sup>c</sup> In addition the reaction mixture was kept 3 h at 0 °C, or warmed to 5 °C for 4 h.<sup>2</sup>



the six-membered-ring cyclization rate is greater than the fivemembered-ring cyclization one, and much greater than the seven-membered-ring cyclization rate. Another interesting aspect is the difference in behaviour of benzylic derivatives (2) and (3) in the tetralin and in the indane series. In the tetralin series, products (2b) and (3b) are stable in the reaction medium; this remarkable stability of the tertiary benzylic alcohol (2b) and chloride (3b) under Lewis acid conditions is due to the destabilization of the incipient carbenium ion (15b) by the electron-withdrawing CF<sub>3</sub> group. In the indane series, this destabilization is partially compensated for by the great stability due to the indanyl structure of ion (15a).<sup>8,9</sup> Consequently, in the reaction medium, as soon as the indanol (2a) is formed, it gives, more or less quickly depending on the Lewis acid, via the chloride (3a), polymeric materials (runs 2 and 5) and also some of the unexpected reduced indane (5a) with  $MeAlCl_2$ \* (run 5). On the other hand, if the reaction is performed in the presence of a good cation trap, e.g. benzene, a Table 3. Cycloalkylation of alcohols (14) and (11)

| Run             | Alcohol <sup>a</sup> | Time/h | Product       | Yield <sup>b</sup> |
|-----------------|----------------------|--------|---------------|--------------------|
| 14              | (14a)                | 1      | ( <b>4a</b> ) | 53°(100)           |
| 15 <sup>d</sup> | (14b)                | 0.5    | ( <b>4b</b> ) | 83                 |
| 16              | (14c)                | 1      |               |                    |
| 17              | (11)                 | 0.3    | (17)          | 20(39)             |
|                 |                      |        | (18)          | 25(43)             |

<sup>*a*</sup> Solution of  $7 \times 10^{-2}$ M of (14) or (11) in CF<sub>3</sub>CO<sub>2</sub>H (2 × 10<sup>-2</sup>M) in H<sub>2</sub>SO<sub>4</sub>. <sup>*b*</sup> Yields of pure isolated products; the parenthetic values were determined by g.l.c. analysis. <sup>*c*</sup> No starting material was recovered, compound (4) was the only product detected; remaining products were polymeric materials. <sup>*d*</sup> Ref. 1.

| <b>Table 4.</b> Cycloalkylation of $\beta$ -ke | eto esters (6), (7), and $(8)^{*}$ |
|------------------------------------------------|------------------------------------|
|------------------------------------------------|------------------------------------|

| Run | Keto ester <sup>b</sup> | Lewis acid       | Time/h | Indanol | Yield <sup>c</sup> |
|-----|-------------------------|------------------|--------|---------|--------------------|
| 18  | (6)                     | TiCl₄ (1.1)      | 7      | (9)     | 85(75)             |
| 19  | (6)                     | $EtAlCl_2$ (1.1) | 16     | (9)     | 23 <sup>d</sup>    |
| 20  | (6)                     | $EtAlCl_{2}$ (3) | 3.5    | (9)     | 83(78)             |
| 21  | (7)                     | TiCl₄ (1.1)      | 4.5    | (10)    | 93(77)             |
| 22  | (7)                     | $EtAlCl_{2}(3)$  | 3      | (10)    | 95(80)             |
| 23  | (8)                     | $TiCl_{4}$ (1.1) | 3.5    | (11)    | 83(77)             |
| 24  | (8)                     | $EtAlCl_2$ (3)   | 6      | (11)    | 85(80)             |

<sup>*a*</sup> Reactions were conducted, at 0 °C, by adding TiCl<sub>4</sub> to a 0.1M solution of  $\beta$ -keto ester in CH<sub>2</sub>Cl<sub>2</sub>, or by adding EtAlCl<sub>2</sub> (1M in hexane) to a  $4 \times 10^{-2}$ M solution of  $\beta$ -keto ester in CH<sub>2</sub>Cl<sub>2</sub>. <sup>*b*</sup> Prepared by dialkylation of ethyl 4,4,4-trifluoroacetoacetate.<sup>5*a*</sup> c Yields determined by g.l.c.; the parenthetic values are isolated yields of pure material. <sup>*d*</sup> 77% of starting material (6) was recovered too.

high yield of arylated indane is obtained. From chloride (**3b**), the Friedel–Crafts arylation is slower, as expected for the more destabilized incipient carbenium ion (**15b**).

In the solvolytic process, the moderate yield of cyclization from the alcohol (14a), in comparison with (14b), could be explained by the slower five-membered cyclization that allows intermolecular processes (*i.e.*, elimination, and therefore

<sup>\*</sup> The reduction of a carbenium ion, or the nucleophilic displacement of a tertiary chloride, is well known with  $EtAlCl_2$ , but is not usual with  $MeAlCl_2$ .<sup>10,11</sup> Nevertheless, we showed that the chloride (**3b**) when treated with  $MeAlCl_2$  (2 equiv.) gave, as a single product, the reduced tetralin (**5b**) (62%).

formation of polymeric materials) to occur. The failure of cyclization with compound (14c) to give a seven-membered ring confirms this point of view.

The steric hindrance of the ketonic group of  $\beta$ -keto esters (6), (7), and (8) would be expected to slow down cyclization rates but also to suppress nucleophilic side-reactions. Effectively, cyclization rates from these  $\beta$ -keto esters did slow down with EtAlCl<sub>2</sub> and no reduction product was obtained, while it is the major product from ketone (1a). In contrast, compared with ketone (1a), the rates of cyclization of  $\beta$ -keto esters (6), (7), and (8) are very much increased with TiCl<sub>4</sub>. This difference between EtAlCl<sub>2</sub> and TiCl<sub>4</sub> cannot be explained without assuming the occurrence of a peculiar stabilization of the intermediate complex between the  $\beta$ -keto ester and Lewis acid. This complexation of ketone and ester groups by a Lewis acid is undoubtedly the root cause of the stereospecificity of the reaction and the *cis* relationship between the hydroxy and ethoxy carbonyl groups.<sup>6</sup>

The surprising stability of tertiary benzylic indanols (9), (10), and (11), in Lewis acid medium contrasts with that of compounds (2a) and (3a). This is certainly due first to the impossibility of an elimination process (responsible for oligomer formation) and, second, to the steric hindrance which prevents any further nucleophilic substitution on the C-1 carbon. This stability explains the highly selective yield of indanols (9), (10), and (11). In solvolytic conditions, the indanol (11) gives the cation (16), and this latter cyclizes into the congested tetracyclic compound (17). However, because of the steric hindrance on the C-1 carbon, the cyclization is slowed down. Competitively, the cation (16) can undergo a fragmentation reaction <sup>12</sup> since there is no  $\alpha$ -hydrogen, finding it easier to lose a relatively stable tropylium cation <sup>12c</sup> than to cyclize. Isomerization of the double bond then leads to the olefinic ester (18).

These results show the possibility of Friedel–Crafts cyclization as a route to 1-trifluoromethyl indanes as well as to 1trifluoromethyltetralins. In particular, it is possible to obtain in this way highly functionalized trifluoromethyl indanols and 1arylindanes in high yields.

## Experimental

<sup>1</sup>H and <sup>19</sup>F n.m.r. were recorded on a Varian EM360 apparatus (60 MHz for <sup>1</sup>H and 56 MHz for <sup>19</sup>F) and a Bruker AM300 (300 MHz) for CDCl<sub>3</sub> solutions with Me<sub>4</sub>Si or CFCl<sub>3</sub> as internal standard where appropriate. <sup>13</sup>C N.m.r. spectra were determined on a Varian CFT20 (20 MHz) and a Bruker AM300 (75 MHz) for CDCl<sub>3</sub> solutions (Me<sub>4</sub>Si as internal standard). Reported signal multiplicities are related to C-F coupling. Mass spectra were obtained on a Nermag R10-10 apparatus coupled to a gas-phase chromatograph (capillary column CPSIL-5, 25 m) and on a Kratos MS50 spectrometer. Gas chromatographic analysis was performed on a Carlo Erba 4130 chromatograph (capillary column SE30, 10 m or 25 m). FT i.r. spectra were recorded in CCl<sub>4</sub> and in CHCl<sub>3</sub> solutions on a Bruker 45 spectrometer. TiCl<sub>4</sub> was purchased from Aldrich, and EtAlCl<sub>2</sub> and MeAlCl<sub>2</sub> were purchased from Aldrich as 1M solutions in hexane.

Lewis Acid-facilitated Ketone Cyclization.—Unless otherwise specified, reactions were performed in dry solvents under argon, with reaction volume adjusted to produce a solution  $\sim 0.1$  M in ketones (1a) or (1b), or 0.04M in  $\beta$ -keto ester (6), (7), or (8). Solutions were cooled to the desired temperatures and the Lewis acid was added dropwise through a septum cap or in small portions. When starting material had disappeared, the mixture was hydrolysed with an equal volume of saturated aqueous NH<sub>4</sub>Cl. The resulting mixture was allowed to come to room temperature and extracted with ether. The extracts were washed twice with brine, dried over anhydrous MgSO<sub>4</sub>, and evaporated under reduced pressure. The crude product was further purified by column chromatography (SiO<sub>2</sub> 60, 70–230 mesh) using usually pentane, and then pentane–ether (95:5) as eluant.

Attempted Cyclization of Ketone (1a).— With EtAlCl<sub>2</sub> (run 3). Reaction of compound (1a) (500 mg, 2.5 mmol) in hexane (20 ml) with EtAlCl<sub>2</sub> (5 ml of a 1M solution in hexane, 5 mmol) for 30 min at -78 °C gave, after work-up, a crude product (490 mg). Chromatography on SiO<sub>2</sub> yielded starting material (1a) (75 mg, 15% recovery) and the alcohol (12a) (375 mg, 75%);  $\delta_{\rm H}$  1.3—3 (5 H, m), 3.8 (1 H, m, HCOH), and 7.1—7.3 (5 H, m, Ph);  $\delta_{\rm F}$  – 80.4 (d, J 6 Hz).

With MeAlCl<sub>2</sub> (run 5). A solution of (1a) (1 g, 5 mmol) in hexane (40 ml) with MeAlCl<sub>2</sub> (10 ml of a 1M solution in hexane, 10 mmol) was stirred for 30 min at -78 °C, then warmed slowly to 0 °C for 1 h. After work-up, crude product (950 mg) was chromatographed on SiO<sub>2</sub> to give successively the indane (5a) (80 mg, 17%), the chloride (3a) (traces), the starting material (1a) (25 mg, 5% recovery), the indanol (2a) (140 mg, 25%), and the alcohol (13a) (35 mg, 7%).

Compound (**5a**) showed  $M^+$ , 186.0660 (C<sub>10</sub>H<sub>9</sub>F<sub>3</sub> requires M, 186.0656);  $\delta_{\rm H}$  2.2—3.2 (4 H, m), 3.6 (1 H, m), and 7.0—7.4 (4 H, m, ArH);  $\delta_{\rm C}$  23.7, 39.8, 49.0 (q, J 28 Hz, CCF<sub>3</sub>), 124.2, 125.1, 126.7, 127.6 (q, J 283 Hz, CF<sub>3</sub>), 128.4, 141.9, and 145.0;  $\delta_{\rm F}$  -71 (d, J 6 Hz); m/z 186 ( $M^+$ , 29%), 117 ( $M^+$  – CF<sub>3</sub>, 100), 115 (31), and 91 (10).

*Compound* (**3a**) showed  $M^+$ , 220.0263 ( $C_{10}H_8^{35}$ ClF<sub>3</sub> requires M, 220.0266);  $\delta_H$  2.2—3.1 (4 H, m) and 7.2—7.8 (4 H, m, ArH);  $\delta_C$  29.9, 38.0, 74.2 (q, J 32 Hz,  $CCF_3$ ), 125.0 (q, J 280 Hz,  $CF_3$ ), 125.0, 127.6, 130.6, 138.1, and 144.0;  $\delta_F - 76.3$  (s); m/z 220 ( $M^+$ , 58%), 222 ( $M^+$ , 14), 185 ( $M^+ - Cl$ , 100), 165 (66), 151 (27), 115 (100), and 63 (19).

Compound (2a) showed  $M^+$ , 202.0601 ( $C_{10}H_9F_3O$  requires M, 202.0605);  $\delta_H 2.1$ —3.1 (5 H, m) and 7.0—7.2 (4 H, m, ArH);  $\delta_C 29.5$ , 35.4, 83.6 (q, J 30 Hz, CCF<sub>3</sub>), 124.2, 125.2, 125.9 (q, J 283 Hz, CF<sub>3</sub>), 127.2, 130.2, 139.2, and 144.0;  $\delta_F - 81.0$  (s); m/z 202 ( $M^+$ , 24%), 133 ( $M^+ - CF_3$ , 3), and 91 (100). Compound (13a) showed  $M^+$ , 218.0919 ( $C_{11}H_{13}F_3O$  requires

*Compound* (**13a**) showed  $M^+$ , 218.0919 (C<sub>11</sub>H<sub>13</sub>F<sub>3</sub>O requires M, 218.0918);  $\delta_{\rm H}$  1.3 (3 H, s, Me), 1.6–2.8 (5 H, m), and 7.0–7.2 (5 H, m, ArH);  $\delta_{\rm C}$  20.2, 29.0, 37.0, 75.3 (q, J 30 Hz, CCF<sub>3</sub>), 126.2, 126.5 (q, J 283 Hz, CF<sub>3</sub>), 128.3, 128.6, and 141.2;  $\delta_{\rm F}$  –83.5 (s); m/z 218 ( $M^+$ , 25%), 200 ( $M^+$  – H<sub>2</sub>O, 7), 131 (52), 105 (36), and 91 (100).

With AlCl<sub>3</sub> in benzene (run 10). A solution of ketone (1a) (500 mg, 2.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (12.5 ml) and benzene (12.5 ml) containing AlCl<sub>3</sub> (680 mg, 5 mmol) was stirred for 30 min at -78 °C, then warmed to 0 °C for 1 h. The crude product obtained on work-up (510 mg) was purified by filtration through a short column of silica gel (pentane) to give the indane (4a) (470 mg, 72%) (Found:  $M^+$ , 262.0963. C<sub>16</sub>H<sub>13</sub>F<sub>3</sub> requires M, 262.0969);  $\delta_{\rm H}$  2.4—3.0 (4 H, m) and 7.0—7.45 (9 H, m, ArH);  $\delta_{\rm C}$  30.0, 36.8, 62.1 (q, J 28 Hz, CCF<sub>3</sub>), 125.1, 126.2, 126.7, 127.6, 127.9 (q, J 282 Hz, CF<sub>3</sub>), 128.2, 128.5, 129.1, 129.4, and 144.6;  $\delta_{\rm F}$  -70 (s).

Cyclization of Ketone (1b).—With EtAlCl<sub>2</sub> (run 6). Reaction of ketone (1b) (300 mg, 1.41 mmol) in hexane (13 ml) with EtAlCl<sub>2</sub> (1.5 ml of a 1M solution in hexane, 1.5 mmol) for 30 min at -78 °C gave a crude product (280 mg), a mixture of alcohols (2b)<sup>2</sup> and (12b)<sup>1</sup> (65:35).

With MeAlCl<sub>2</sub> (run 8). A solution of ketone (1b) (530 mg, 2.5 mmol) in hexane (20 ml) with MeAlCl<sub>2</sub> (5 ml of a 1M solution in hexane, 5 mmol) was stirred for 30 min at -78 °C, then was warmed slowly to 0 °C for 1 h. After work-up, the crude product

(450 mg) was chromatographed on SiO<sub>2</sub> to give the alcohol (**2b**)<sup>2</sup> (405 mg, 75%).

With AlCl<sub>3</sub> in benzene (run 11). A solution of ketone (**1b**) (530 mg, 2.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (12.5 ml) and benzene (12.5 ml) containing AlCl<sub>3</sub> (680 mg, 5 mmol) was stirred for 30 min at -78 °C, then warmed to 0 °C for 1 h. The crude product obtained on work-up (520 mg) was eluted on an SiO<sub>2</sub> column to give the chloride (**3b**)<sup>2</sup> (480 mg, 82%).

(*Run* 12). A solution of ketone (**1b**) (530 mg, 2.5 mmol) in  $CH_2Cl_2$  (12.5 ml) and benzene (12.5 ml) containing  $AlCl_3$  (680 mg, 5 mmol) was stirred for 15 min at -78 °C, then warmed to 0 °C during 1 h, and stirred for 3 h at 0 °C. The crude product obtained on work-up (450 mg) was purified by  $SiO_2$  chromatography to give compound (**4b**)<sup>2</sup> (360 mg, 52%).

Reactions with Ketone (1c).—With MeAlCl<sub>2</sub> (run 9). A solution of ketone (1c) (230 mg, 1 mmol) in hexane (8 ml) containing MeAlCl<sub>2</sub> (2 ml of a 1M solution in hexane, 2 mmol) was stirred for 30 min at -78 °C, then warmed to 0 °C for 1 h. The crude product (200 mg) was eluted on an SiO<sub>2</sub> column to give the alcohol (13c) (45 mg, 18%);  $\delta_{\rm H}$  1.3 (3 H, m, Me), 1.4—2.4 (7 H, m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> and OH), 2.5—2.9 (2 H, m, CH<sub>2</sub>Ph), and 7.2 (5 H, s, ArH);  $\delta_{\rm F}$  – 84 (s).

With AlCl<sub>3</sub> in benzene (run 13). A solution of ketone (1c) (230 mg, 1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) and benzene (5 ml) containing AlCl<sub>3</sub> (270 mg, 2 mmol) was stirred for 30 min at -78 °C, then warmed to 0 °C for 1 h. The crude product obtained on work-up (230 mg) was eluted on an SiO<sub>2</sub> column to give the starting material (1c) (215 mg, 94% recovery).

Solvolysis of the Alcohol (14a) (Run 14).—Alcohol (14a) (500 mg, 1.8 mmol) was dissolved in a 0.2M solution of  $H_2SO_4$  in trifluoroacetic acid (TFA) (25 ml) and the solution was refluxed (72 °C) for 1 h. The TFA was evaporated off under reduced pressure. After being cooled, the mixture was diluted with  $CH_2Cl_2$ , washed successively with aqueous sodium hydrogen carbonate and water, dried, and evaporated to dryness. Chromatography on silica gel with pentane yielded the indane (4a) (200 mg, 53%).

Solvolysis of the Alcohol (14c) (Run 16).—Alcohol (14c) (200 mg, 0.7 mmol) was dissolved in a 0.2M solution of  $H_2SO_4$  in TFA (10 ml) with an internal standard [1-bromo-3-(*m*-chlorophenyl)propane] and the solution was refluxed for 1 h. G.l.c. monitoring showed the progressive disappearance of starting material. Work-up and chromatography gave only polymeric materials besides the internal standard.

Solvolysis of the Indanol (11) (Run 17).-Indanol (11) (540 mg, 1.5 mmol) was dissolved in a 0.2M solution of H<sub>2</sub>SO<sub>4</sub> in a mixture of TFA (5 ml) and CH<sub>2</sub>Cl<sub>2</sub> (5 ml) and the solution was refluxed for 20 min. Work-up and chromatography on SiO<sub>2</sub> (pentane-Et<sub>2</sub>O, 99:1) gave the indane (18) (96 mg, 25%), m/z256 (*M*<sup>+</sup>, 91%), 228 (12), 211 (100), 197 (33), 183 (62), 164 (56), 133 (62), and 115 (37);  $\delta_{\rm H}$ (300 MHz) 1.35 (3 H, t, J 7 Hz, OCH<sub>2</sub>Me), 4.33 (2 H, q, J 7 Hz, OCH<sub>2</sub>Me), 4.54 (1 H, q, J 8.4 Hz,  $\tilde{CHCF}_3$ ), and 7.21–7.82 (5 H, m, ArH);  $\delta_F$  –67 (d, J 9 Hz, CHCF<sub>3</sub>); δ<sub>C</sub> 14.2, 53.0 (q, J 30 Hz, CCF<sub>3</sub>), 61.0, 124, 125.2 (q, J 280 Hz, CF<sub>3</sub>), 125.4, 128.8, 129.1, 145.6, and 163.6; and then tetracyclic compound (17) (104 mg, 20%); m/z 346 ( $M^+$ , 28%), 273 (43), 272 (99), 233 (32), 203 (100), 101 (21), and 91 (27);  $\delta_{\rm H}(300~{\rm MHz})$  1.16 (3 H, t, J 7 Hz, OCH  $_2Me$ ), 2.95 and 3.83 (4 H,  $q_{AX} = 16 Hz, 2 \times CH_2$ , 4.15 (2 H, q, J 7Hz, OCH<sub>2</sub>Me), and 7.28 and 7.47 (8 H, m, 2 ×  $C_6H_4$ );  $\delta_F - 69.4$  (s);  $\delta_C 13.7$ , 41.8, 61.4, 63.4, 72.7 (q, J 28 Hz, CCF<sub>3</sub>), 124.6, 124.7, 126.4 (q, J 223 Hz, CF<sub>3</sub>), 127.3, 128.6, 138.4, 142.7, and 172.8.

Cyclization of  $\beta$ -Keto Ester (6).—With TiCl<sub>4</sub> (run 18). A

solution of β-keto ester (**6**) (400 mg, 1.3 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (13 ml) was stirred with TiCl<sub>4</sub> (271 mg, 1.43 mmol) for 7 h at 0 °C. After the usual work-up, the crude product (370 mg) was chromatographed on SiO<sub>2</sub> to give the *indanol* (**9**) (300 mg, 75%) (Found:  $M^+$ , 316.1285. C<sub>16</sub>H<sub>19</sub>F<sub>3</sub>O<sub>3</sub> requires M, 316.1286);  $\delta_{\rm H}$ (300 MHz) 0.96 [3 H, m, (CH<sub>2</sub>)<sub>2</sub>Me], 1.04—1.9 (2 H, m, CH<sub>2</sub>Me), 1.18 (3 H, t, J 7 Hz, OCH<sub>2</sub>Me), 2.05 (2 H, m, CH<sub>2</sub>CH<sub>2</sub>Me), 3.26 (2 H, q,  $J_{\rm AB}$  15.8 Hz, 3-H<sub>2</sub>), 4.12 (2 H, q, 7 Hz, OCH<sub>2</sub>Me), 5.16 (1 H, s, OH), and 7.3 (4 H, m, ArH);  $\delta_{\rm C}$  13.9, 14.5, 19.4, 35.2, 40.3, 61.8, 62.1, 85.5 (q, J 28 Hz, CCF<sub>3</sub>), 124.1, 125.2 (q, J 287 Hz, CF<sub>3</sub>), 125.3, 127.1, 129.8, 139.5, 140.9, and 175.3;  $\delta_{\rm F}$  -75.5 (s); m/z 298 ( $M^+$  - 18, 39%), 278 (48), 241 (47), 225 (100), 205 (48), 197 (63), 177 (37), 145 (35), 115 (29), and 91 (18).  $v_{\rm max}$ .(FT) (CHCl<sub>3</sub>) 3 570, 3 370 (OH), and 1 695 cm<sup>-1</sup> (CO<sub>3</sub>Me).

With EtAlCl<sub>2</sub> (run 20). A solution of keto ester (6) (150 mg, 0.47 mmol) in  $CH_2Cl_2$  (12 ml) was stirred with EtAlCl<sub>2</sub> (1.4 ml of a 1M solution in hexane, 1.4 mmol) for 3.5 h at 0 °C. After the usual work-up, the crude product was eluted on SiO<sub>2</sub> to give the indanol (9) (120 mg, 78%).

*Cyclization of* β-*Keto Ester* (7).—*With* TiCl<sub>4</sub> (*run* 21). A solution of keto ester (7) (400 mg, 1.3 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (13 ml) was stirred with TiCl<sub>4</sub> (265 mg, 1.4 mmol) for 4.5 h at 0 °C. After the usual work-up, the crude product (370 mg) was purified by elution on an SiO<sub>2</sub> column to give *compound* (10) (310 mg, 77%) (Found:  $M^+$ , 314.1129. C<sub>16</sub>H<sub>17</sub>F<sub>3</sub>O<sub>3</sub> requires *M*, 314.1129);  $\delta_{\rm H}$ (300 MHz) 1.18 (3 H, t, *J* 7 Hz, OCH<sub>2</sub>*Me*), 2.66—2.92 (2 H, m), 3.32 (2 H, q, *J*<sub>AB</sub> 16 Hz, 3-H<sub>2</sub>), 4.13 (2 H, q, 7 Hz, OCH<sub>2</sub>Me), 5.1—5.22 (3 H, m, CH<sub>2</sub>=C and OH), 5.88 (1 H, m), and 7.33 (4 H, m, ArH);  $\delta_{\rm C}$  13.6, 37.4, 39.7, 61.5, 61.8, 85.5 (q, *J* 29 Hz, CCF<sub>3</sub>), 118.7, 124.2, 125.2, 125.3 (q, *J* 287 Hz, CF<sub>3</sub>), 127.3, 129.9, 139.0, 141.0, and 174.3 (CO<sub>2</sub>Me);  $\delta_{\rm F}$  – 75.5;  $v_{\rm max}$ . (FT) (CHCl<sub>3</sub>) 3 570, 3 395 (OH), and 1 695 (CO<sub>2</sub>Me); *m/z* 296 ( $M^+$  – 18, 79%), 276 (16), 248 (27), 233 (100), 183 (51), 171 (38), 155 (25), 153 (28), 128 (28), 115 (31), 91 (20), 77 (21), and 57 (20).

With EtAlCl<sub>2</sub> (run 22). A solution of keto ester (7) (300 mg, 0.96 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (24 ml) was stirred with EtAlCl<sub>2</sub> (2.9 ml of a 1M solution in hexane, 2.9 mmol) for 3 h at 0 °C. The usual work-up gave a crude product (270 mg), which was purified by elution on an SiO<sub>2</sub> column to give the indanol (10) (240 mg, 80%).

*Cyclization of* β-*Keto Ester* (8).—*With* TiCl<sub>4</sub> (*run* 23). A solution of keto ester (8) (400 mg, 1.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (11 ml) was stirred with TiCl<sub>4</sub> (220 mg, 1.21 mmol) at 0 °C for 3.5 h. After the usual work-up, the crude product was purified on an SiO<sub>2</sub> column to give the indanol (11) (310 mg, 77%) (Found:  $M^+$ , 364.1283. C<sub>20</sub>H<sub>19</sub>F<sub>3</sub>O<sub>3</sub> requires *M*, 364.1286);  $\delta_{\rm H}$  (300 MHz) 0.87 (3 H, t, *J* 7.2 Hz, OCH<sub>2</sub>*Me*), 3.32 (2 H, q, *J*<sub>AB</sub> 15.7 Hz, 3-H<sub>2</sub>), 3.34 (2 H, q, *J*<sub>AB</sub> 13.3 Hz, CH<sub>2</sub>Ph) 3.85 (2 H, q, 7.2 Hz, OCH<sub>2</sub>Me), 5.27 (1 H, m, OH), and 7.26 (9 H, m, ArH);  $\delta_{\rm c}$  13.4, 38.5, 61.9, 63.1, 85.2 (q, *J* 28 Hz, CCF<sub>3</sub>) 124.1, 125.3 (q, *J* 287 Hz, CF<sub>3</sub>), 125.5, 127.0, 127.1, 128.3, 129.8, 130.0, 136.7, 138.7, 141.5, and 173.9;  $\delta_{\rm F}$  -75.2;  $v_{\rm max}$ .(FT) (CHCl<sub>3</sub>) 3 568, 3 396 (OH), and 1 697 cm<sup>-1</sup> (CO<sub>2</sub>Me); *m*/z 346 ( $M^+$  – 18, 5%), 326 (6), 298 (13), 273 (26), and 91 (100).

With EtAlCl<sub>2</sub> (run 24). A solution of keto ester (8) (300 mg, 0.82 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) was stirred with EtAlCl<sub>2</sub> (2.5 ml of a 1M solution in hexane, 2.46 mmol) at 0 °C for 6 h. After the usual work-up, the crude product (280 mg) was purified on an SiO<sub>2</sub> column to give the indanol (11) (240 mg, 80%).

### Acknowledgements

We are pleased to acknowledge Mrs. H. Le Pesant (ENSCP) for the FT i.r. measurements and Mrs. M. Charpentier-Morize for stimulating discussions.

#### J. CHEM. SOC. PERKIN TRANS. I 1989

### References

- 1 D. Bonnet-Delpon, C. Cambillau, M. Charpentier-Morize, R. Jacquot, D. Mesureur, and M. Ourevitch, *J. Org. Chem.*, 1988, **53**, 754.
- 2 D. Bonnet-Delpon, M. Charpentier-Morize, and R. Jacquot, J. Org. Chem., 1988, 53, 759.
- 3 A. A. Khalaf and R. M. Roberts, J. Org. Chem., 1972, 37, 4227; 1966, 31, 89.
- 4 G. Olah in 'Friedel-Crafts and Related Reactions,' Interscience, New York, 1963—1964, part 2, pp. 659—901.
- 5 (a) C. Aubert, J. P. Bégué, and G. Née, submitted for publication in J. Fluorine Chem.; (b) J. P. Bégué and D. Mesureur, J. Fluorine Chem., 1988, 39, 271.
- 6 G. A. Molander, J. B. Etter, and P. W. Zinke, J. Am. Chem. Soc., 1987, 109, 2596.
- 7 W. A. Adam, J. Baeza, and J. C. Liu, J. Am. Chem. Soc., 1972, 94, 2000; S. Mageswaran and M. U. S. Sultanbawa, J. Chem. Soc., Perkin Trans. 1, 1976, 884; W. Adam, G. Martiner, and J. Thompson, J. Org. Chem., 1981, 46, 3359.

- 9 N. D. Deno, C. V. Pittman, Jr., and J. O. Turner, J. Am. Chem. Soc., 1965, 87, 2153.
- 10 T. Mole and E. A. Jeffery, in 'Organoaluminium Compounds,' Elsevier, Amsterdam, 1972, p. 32.
- 11 B. B. Snider, M. Karras, R. T. Price, and D. J. Robini, J. Org. Chem., 1982, 47, 4538.
- 12 (a) K. Conrow, J. Am. Chem. Soc., 1959, 81, 5461; (b) V. J. Shiner, Jr., and G. F. Meier, *ibid.*, 1966, 31, 137; (c) J. E. Dubois, J. S. Lomas, and D. S. Sagatys, *Tetrahedron Lett.*, 1971, 1348.
- 13 S. Fung, N. A. Abraham, F. Bellini, and K. Sestani, Can. J. Chem., 1983, 61, 368.

Received 13th May 1988; Paper 8/01893F